Distribución de emisiones en grilla

Prof. Marcelo Mena

Director

Programas de Postgrado en Recursos Naturales

Universidad Andres Bello

mmena@unab.cl

Fundamentos

- Inventarios de emisiones son base para gestión ambiental (Planes de descontaminación, restricciones en tiempo real)
- Generación de inventarios depende de otros ministerios.
 - Ejemplo: Modelo de transporte para estimar emisiones de fuentes móviles
- Modelación regional requiere inventarios regionales. Integrar información.
- Un inventario es más que una tabla que se muestra a la prensa.
- Modeladores usualmente requieren inventarios antes de que sean desarrollados.
- Mostraremos una serie de formas de distribuir emisiones para inventarios que no han sido distribuidos geográficamente.

ANDRES BELLO

Inventario nacional de emisiones (Mexico)

Financiado por INE, EPA, el estudio fue hecho por ERG.

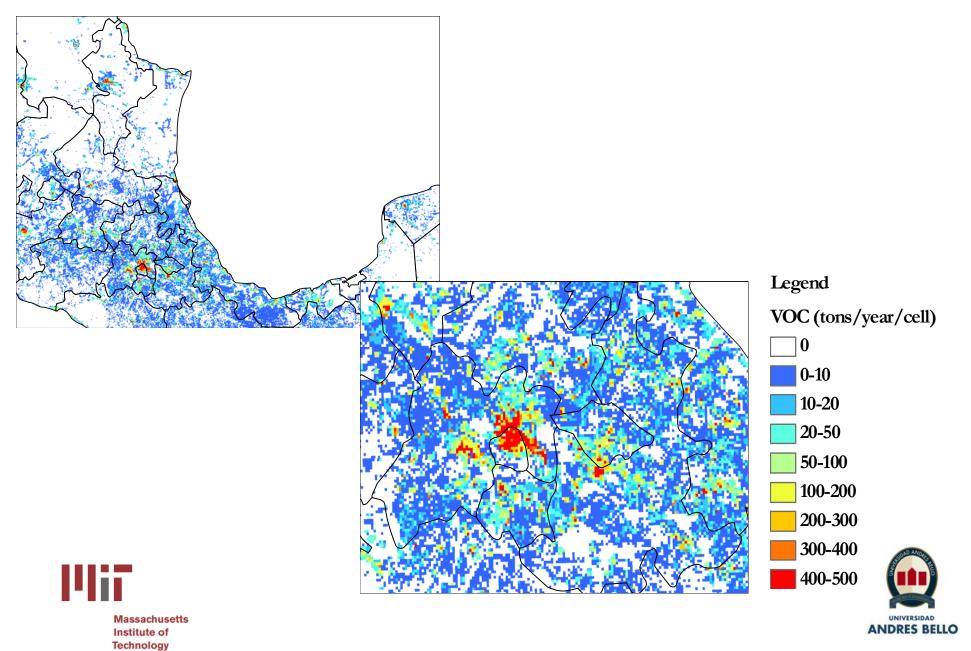
Fuentes puntuales medidas, o calculadas por factores de emisión.

Fuentes areales calculadas por actividad económica y factores de emisión.

Fuentes móviles calculadas por SMOKE y modelo de transporte, con factores de emisión específicos para México.

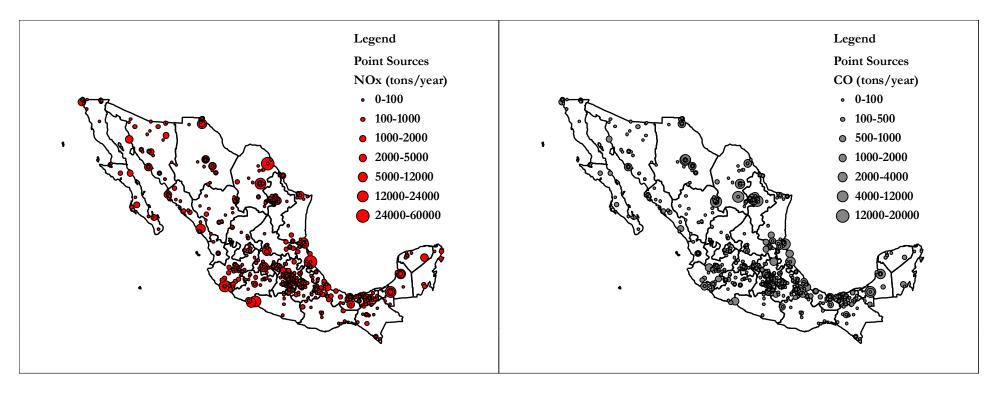
Fuentes areales

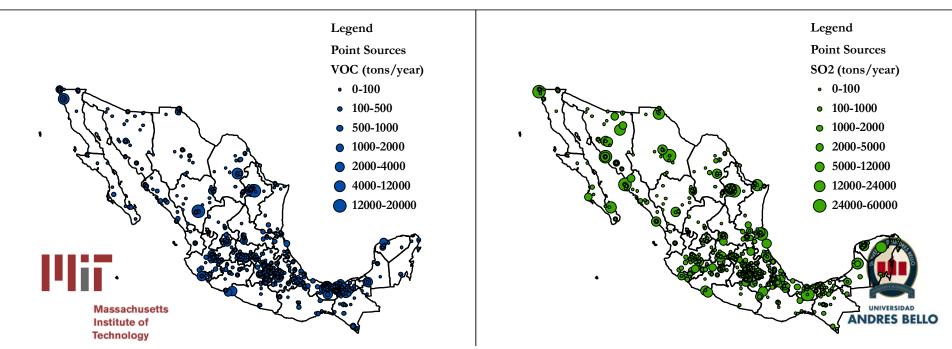
 Emisiones totales de cada región se distribuyen basados en población regional a ~2.6km de resolución, usando densidades de población de LANDSCAN


$$E_{ij_k} = \frac{E_{ik} * Pi_j}{P_i}$$

- Pi: Población total de estado i.
- Pij: Población de grilla j de estado i.
- Eik: Emisión total de especie k para estado i (Mg/año)
- Eijk: Emisión de especie k para grilla j de estado i (Mg/año)

Emisiones areales

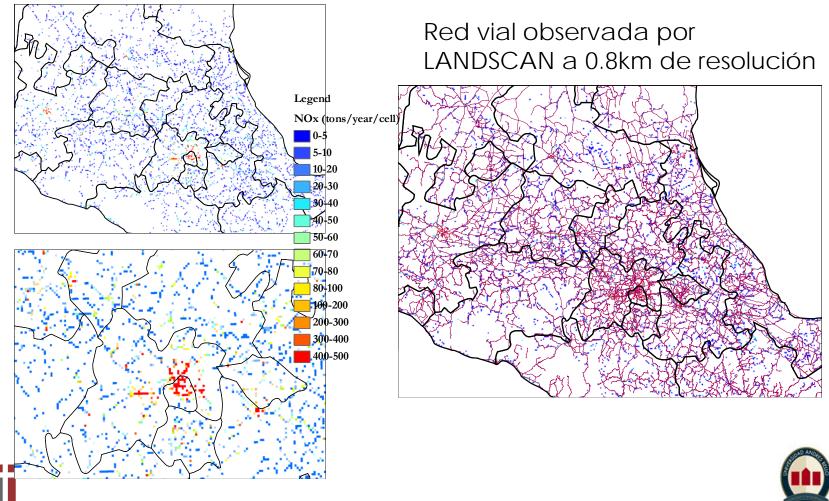



Fuentes puntuales

- Localidades con más de una fuente se combinan en una fuente
- Estados en frontera tienen categorizada tipo de fuente, mientras que los estados no fronterizos no consideran categorías de sector de emisión
- Total nacional de ~3500 fuentes

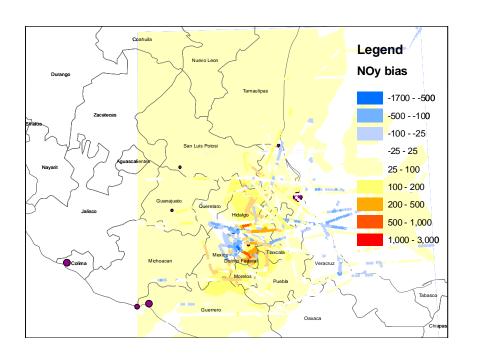
Fuentes móviles

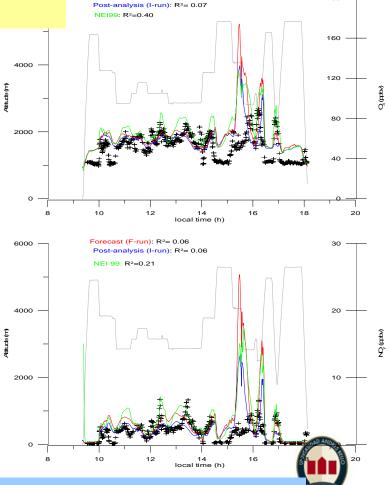
 Para cada estado se distribuyen de acuerdo a población en grilla para red vial observada por LANDSCAN (solamente se distribuyen emisiones done existan caminos)


$$E_{ij_k} = \frac{E_{ik} * Pi_j}{P_i}$$

Fuentes móviles

Emisiones anuales de NOx para fuentes móviles, inventario nacional de emisiones

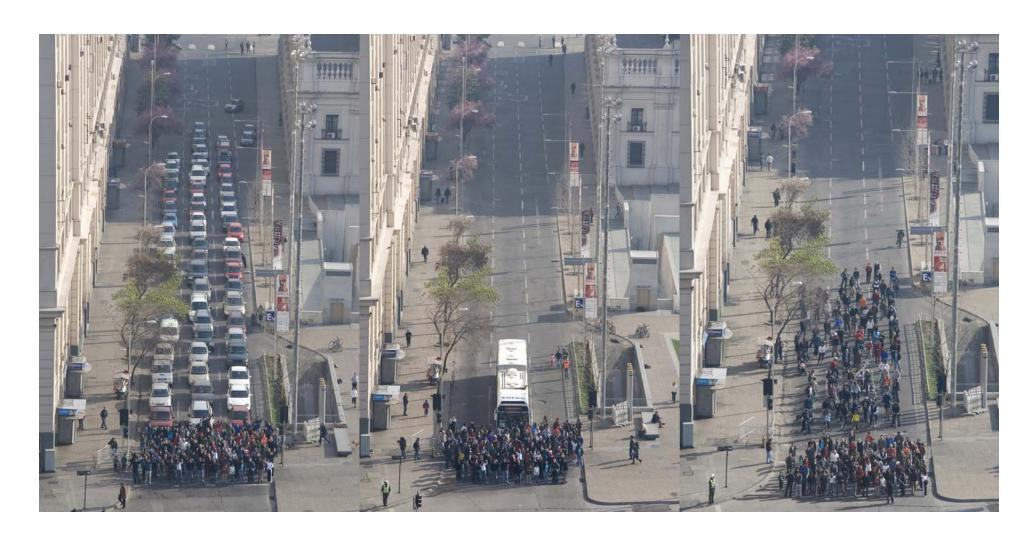



ANDRES BELLO

Resultados de modelación

Mucho mejor rendimiento en modelación de contaminación más lejano al DF durante campaña MILAGRO.

200


RES BELLO

Forecast (F-run): R2= 0.11

Figure 5. Interpolated model % bias (modeled-observed) extracted along C-130 flight tracks for MILAGRO. Mexico National Emissions Inventory

Santiago, Chile

 Trabajo de alumna UNAB Catalina Ivovich, hoy estudiando PhD en KAUST¿

Santiago de Chile, Mega ciudad en Potencia

- Condiciones Topográficas
- Mala Ventilación de la Cuenca
- Factores Meteorológicos.
- Rápido Crecimiento Urbano.

Reseña Histórica

Crecimiento de Santiago

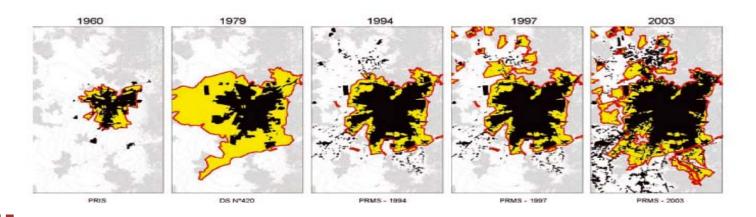


Figura 4: Crecimiento Mancha Urbana de la R.M. (Plataforma Urbana, 2008)

Institute of Technology

Reseña Histórica

Calidad del Aire R.M.

1987: Red MACAM I

1988: Resolución № 369 (Tabla ICA)

1997: Red MACAM II

2007: Estudios Red MACAM III

Tabla 1: Índice Calidad del Aire e Índice Calidad del Aire Particulado.

ÍNDICE	CALIFICA CIÓN		ICAP			
		CO ppm 8H	SO ₂ μg/m ³ 24 H	NO ₂ μg/m ³ 1 H	O ₃ μg/m ³ 1 H	PM ₁₀ μg/m ³ 24 H
0 -100	BUENO	0 - 9	0 - 365	0 - 470	0 -160	0-150
101 - 200	REGULAR	9-19	365 - 929	470 - 1290	160 - 470	150 - 195
201 - 300	MALO	19 – 30	929 - 1493	1290 -2110	470 - 780	195 – 240
301 - 400	CRITICO	30 - 40	1493 - 2056	2110 - 2930	780 - 1090	240 - 285
401 - 500	PELIGROSO	40 - 50	2056 - 2620	2930 - 3750	1090 - 1400	285 - 330

Inventario de Emisiones

Tabla 2: Inventario de Emisiones Año 2000 (CONAMA)

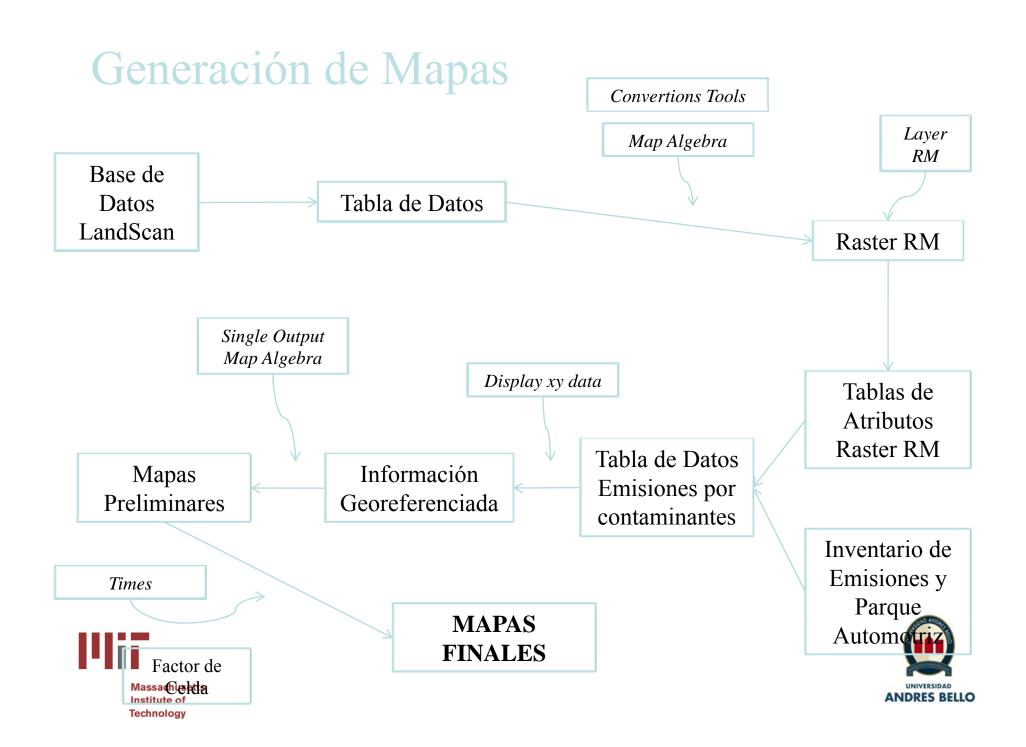

	PM_{10}	CO	NOx	VOC	SOx	NH_3
	Ton/año	Ton/año	Ton/año	Ton/año	Ton/año	Ton/año
Emisiones Areales	2.597	16.014	8.149	56.264	5.991	28.458
Emisiones Móviles	2.425	175.586	46.650	24.664	2.197	933
Emisiones Totales	5.022	191.600	54.799	80.928	8.188	29.391

Tabla 3: Inventario de Emisiones Año 2005 (DICT UC)

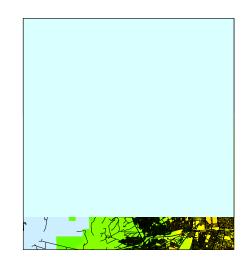
	PM_{10}	PM 25	CO	NOx	VOC	SOx	NH_3
LPS	717,3	558,1	4.427,5	6.721,1	4.213,6	6.283,1	128,6
Wood	25,1	24,5	298,7	3,1	270,8	0,5	2,6
Otras residenciales	35,5	33	152,5	518,8	27.159,5	78,6	2023,4
Comerciales	0	0	0	0	5.404,9	0	0
Quemas	187,85	178,85	1630,29	77,44	130,62	8,91	8,75
Otras areas	568,3	448,2	4.191,8	109,9	14309,5	0	1.4915,3
Total Areales	816,75	684,55	6.273,29	709,24	47.275,32	88,01	1.6950,05
Ruta	2.281,4	2.988,3	131.614,3	31.154,3	92880,9	1.0870,1	32.8103,8
Fuera de Ruta	87,1	80	1.283,8	605,5	186,3	26,9	18,7
Total Móviles	2.368,5	3.068,3	132.898,1	31.759,8	93067,2	1.0897	32.8122,5

Institute of Technology

Desarrollo de Tablas Fuentes Areales

$$E_i = E_t \frac{P_i}{P_t}$$

• Donde:


- Ei = Emisiones parciales punto grilla
- \circ Et = Emisiones totales Región Metropolitana.
- o Pi = Población parcial punto grilla.
- \circ Pt = Población total Región Metropolitana.

Distribución en grilla Fuentes Móviles

- Distribución de acuerdo a:
 - Población
 - Existencia de una red vial.
- Moduladas por:
 - Densidad Poblacional.
 - Densidad Parque Vehicular Comunal.
 - Kilómetros Pavimentados por Comuna.

Fuentes Móviles

- o Distribuidas de Acuerdo a la Población:
- Moduladas por Densidad Poblacional.
- Moduladas por Densidad Parque Vehicular Comunal.

$$E_i = E_t \frac{P_i}{P_t}$$

Fuentes Móviles

- Distribuidas de Acuerdo a la Población:
 - Moduladas por Kilómetros Pavimentados por Comuna.

- Distribuidas de acuerdo a la existencia de una red vial:
 - Moduladas por Densidad Poblacional.

Fuentes Móviles

 Moduladas por Densidad del Parque Vehicular Comunal: Moduladas por Kilómetros Pavimentados por Comuna:

• Distribuidas de Acuerdo a la Población

Fuentes Móviles

Modulado por Densidad Poblacional

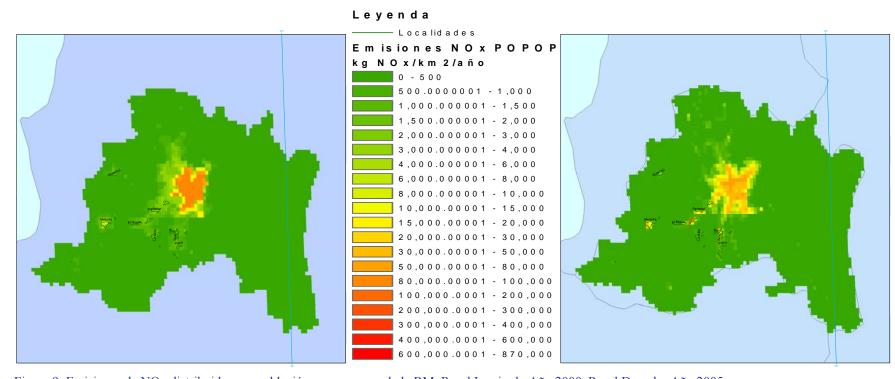


Figura 9: Emisiones de NOx distribuidas por población por comunas de la RM. Panel Izquierdo Año 2000. Panel Derecho Año 2005

Modulado por Densidad Parque Vehicular Comunal

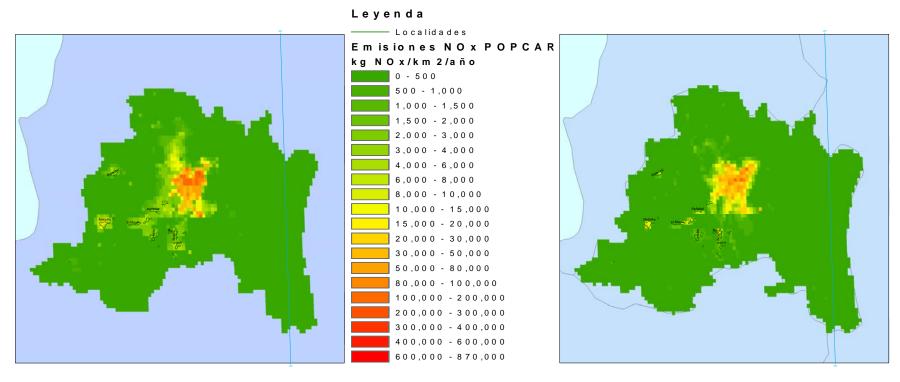
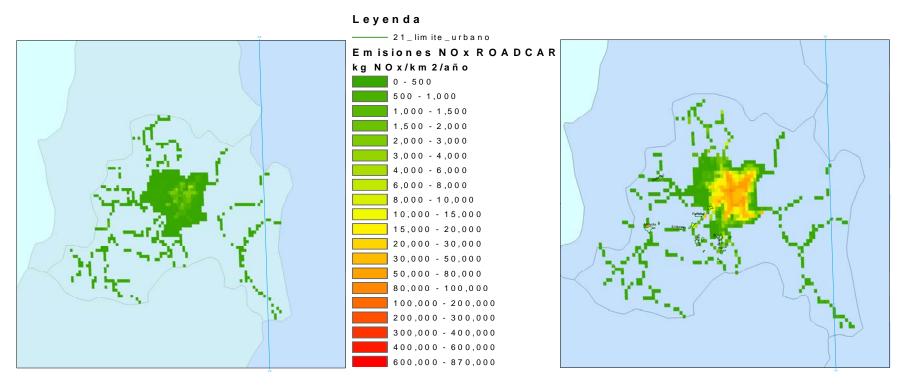


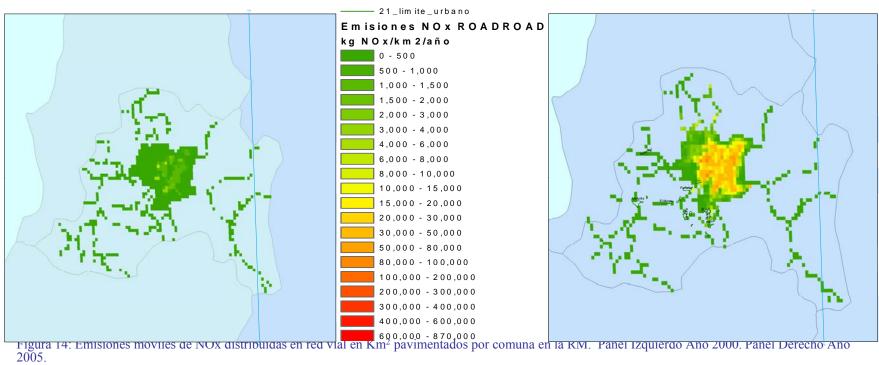
Figura 10: Emisiones móviles de NOx distribuidas por densidad de parque automotriz comunal de la RM. Panel Izquierdo Año 2000. Panel Derecho Año 2005.

• Distribuidas de acuerdo a la existencia de una red vial, de manera booleana.

Fuentes Móviles

Modulado por Densidad Parque Vehicular Comunal




Figura 13: Emisiones móviles de NOx distribuidas en red vial por parque automotriz en la RM. Panel Izquierdo Año 2000. Panel Derecho Año 2005.

Modulado por Kilómetros Pavimentados por Comuna, dividido el Total de Kilómetros existentes en la Región Metropolitana

Leyenda

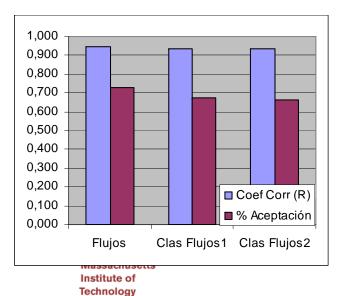
Saide, P., et al., Spatial disaggregation of traffic emission inventories in large cities using simplified top down methods. ,Atm. Env (2009)

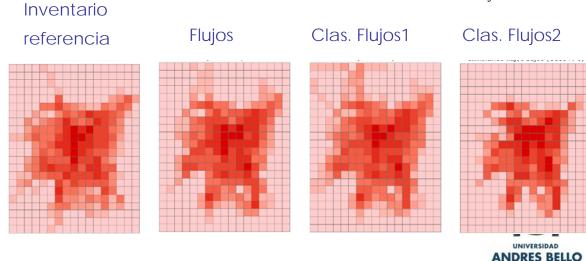
: Basado en densidad de caminos

Techn

Se calcula una emisión normalizada usando densidad de largo de calles

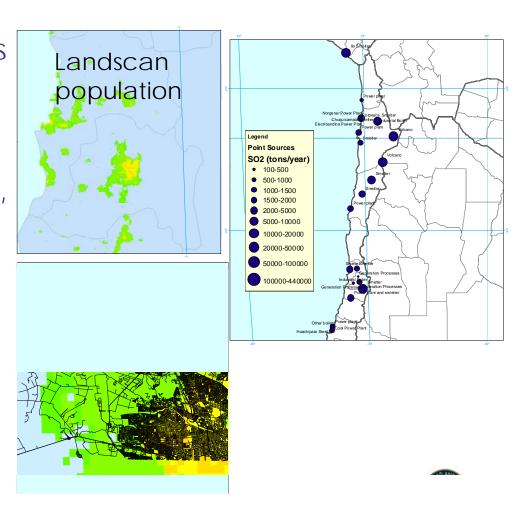

$$E_j = \sum_{i}^{j} \sum_{l} l_{ij} \qquad E_j = f \sum_{i}^{j} \sum_{l} l_{ij}^p + (1-f) \sum_{j}^{l} \sum_{l} l_{ij}^s \qquad \text{Referencia menos Densidad de largo} \\ \text{Red vial principal} \qquad \text{Red vial principal} \qquad \text{Arcos ESTRAUS} \\ \text{Grid} \qquad \text{Grid}$$


Saide, P., et al., Spatial disaggregation of traffic emission inventories in large cities using simplified top down methods. ,Atm. Env (2009)


Largos y clasificación de flujos

- Problema: Para usar flujos se necesita modelo de transporte (ESTRAUS)
- Idea: Utilizar flujos de campañas vehiculares (ej. IVE) para clasificar arcos de una red principal: Flujos Altos, medios y bajos.
- Calles no medidas: Similaridad, Observaciones, Imágenes satelitales
- Simplificación de la red: Eliminar categoría de flujos bajos

Se elimina el 63% de los arcos de la red



Inventario nacional de emisiones (Chile)

 Compilación de todos los inventarios de emisiones de CONAMA en un formato. En caso de ausencia de infórmación, se usa EDGAR FT2000 (modelo global) e inventario global de BC/OC de Tami Bond.

