

AQ Forecasting

What Are We Forecasting – Averaging Time (3 of 3)

Ulriksen and Merino (2003)

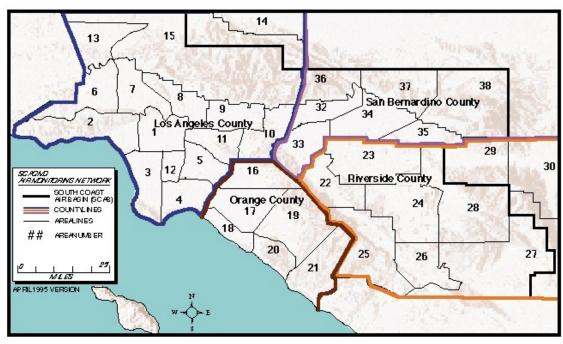
What Are We Forecasting – Spatial Scale (1 of 2)

Scales

- Regional or mesoscale (10 km 400 km)
- Urban or sub-regional (10 km)
- Neighborhood or single site (< 5 km)
- Forecast scale needs to match local air quality scale

Forecast zone

- Several may exist in an area
- Areas with complex terrain, meteorology, and emission patterns are subject to multiple forecast zones


Metrics

- Maximum of all sites in forecast zone
- Multi-site average
- Others

What Are We Forecasting – Spatial Scale (2 of 2)

Local forecast regions

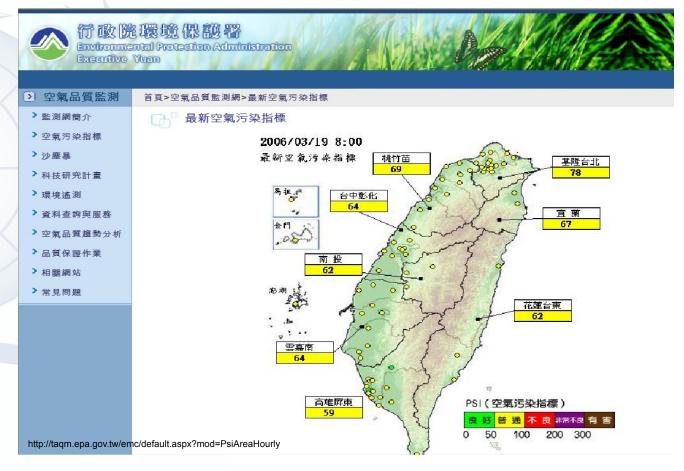
Los Angles, California, USA Forecast Regions

Hourly ozone maps

of Air Quality Index

Summary

- Pollutants of concern
 - Major (ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide)
 - Toxics
- Toxics are difficult to forecast because of uncertainties in emissions and their chemical change in the atmosphere
- What are we forecasting?
 - Units of measure
 - Averaging time
 - Spatial scale


Protect Public Health

- Forecast allows the public to plan
 - Activities to avoid exposure to unhealthy air
 - Outdoor activities
 - Health and medical care
- Forecasts are used by
 - Air quality agencies (communications office)
 - Media (television, newspaper, radio, and web)
 - Public (general and sensitive individuals)
 - Schools (scheduling outdoor activities)
- Critical forecast issues
 - Timeliness (when do users need it)
 - Localized forecasts
 - Multi-day (one-to-five day) forecasts are useful
 - Easy-to-understand format

Protect Public Health (Example)

Taiwan EPA web site showing current and forecasted air quality conditions

Section 4 – What Are We Forecasting?

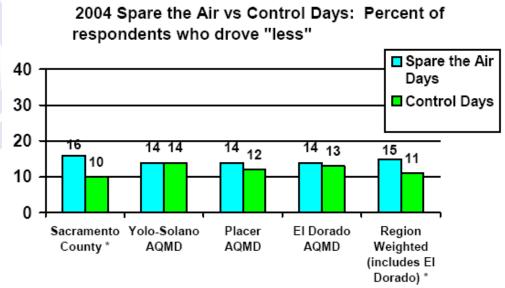
Operate Emissions Reduction Programs (1 of 2)

- Types of programs
 - Voluntary (not required)—sometimes called "Action Day Programs"
 - Mandatory (required)

- Forecast needed for
 - Advanced planning to prepare for communication and taking action
 - Notification of stakeholders
- Critical forecast issues
 - Participation depends on forecast timeliness and accuracy
 - Emissions are affected (may affect forecast verification)

Operate Emissions Reduction Programs (2 of 2)

- Voluntary emissions reduction program
 - Spare The Air (STA) Program (Action Day) in Sacramento,
 California, USA
 - Objective Seeks public involvement to voluntarily reduce emissions on forecasted Spare The Air Days
- How are forecasts used
 - Spare The Air Day is triggered by a one-day forecast
 - On Spare The Air Days
 - Notify the public by television, public service announcements, radio, newspaper, fax, and web
 - Ask the public to reduce emission-producing activities
 - Reduce driving by carpooling (several people in one vehicle) and taking public transit
 - Reduce use of paints, solvents, etc.

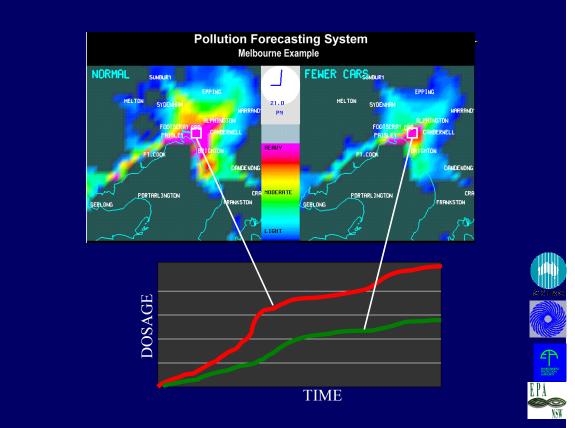


How Are Forecasts Used? (1 of 4)

1. Evaluate voluntary program results

- Compare driving habits on STA and non-STA (control) days
- Evaluate reduction in driving
- Calculate reduction in emissions

Source: http://www.cleanerairpartnership.org/images/Final%20Evaluatio&ir%20Campaign.pdf



How Are Forecasts Used? (2 of 4)

2. Operate mandatory emissions reduction programs

(example)

"Green" Scenario – on days of forecast high pollution, develop a forecast with reduced traffic that could result from public warnings, to show the improvement of air quality: Melbourne on a high smog day and with a 25% reduction in traffic.

WMO OMM

Section 4 – What Are We Forecasting?

How Are Forecasts Used? (3 of 4)

3. Conduct special sampling

- Several types of programs
 - Localized special monitoring
 - Regional monitoring
 - Field studies
- Forecast are needed for
 - Advanced planning to prepare monitoring or equipment (aircraft, samplers, other sensors)
 - Sampled pre-episode conditions (day before high air quality concentrations)
- Critical forecast issues
 - Obtaining detailed forecast
 - Allowing sufficient time to prepare monitoring equipment and personnel

Section 4 – What Are We Forecasting?

How Are Forecasts Used? (4 of 4)

4. Conduct special sampling (example)

Winds and air pollution forecasts are used in the design of day-by-day sampling strategies in major studies providing data for impact assessments for new industries or expansions of industrial facilities. The photo is from a study of power stations in the Latrobe Valley of Victoria

Summary

- Forecasts allow for planning (activities, exposure avoidance, health care) and action
- Forecasts are used by air quality agencies, media, public, industries, and schools
- Critical forecast issues include
 - Timeliness
 - Localized forecasts
 - Multi-day
 - Easy-to-understand format (Air Index)

Forecasting Tools and Methods (1 of 3)

- Persistence
- Climatology
- Criteria
- Statistical
 - Classification and Regression Tree (CART)
 - Regression
- Neural networks
- Numerical modeling
- Phenomenological and experience
- Predictor variables

Fewer resources, lower accuracy

More resources, potential for higher accuracy

Forecasting Tools and Methods (2 of 3)

Tool development is a function of

- Amount and quality of data (air quality and meteorological)
- Resources for development
 - Human
 - Software
 - Computing
- Resources for operations
 - Human
 - Software
 - Computing

Forecasting Tools and Methods (3 of 3)

For each tool

- What is it?
- How does it work?
- Example
- How to develop it?
- Strengths
- Limitations

Criteria

- Uses threshold values (criteria) of meteorological or air quality variables to forecast pollutant concentrations
 - For example, if temperature > 27°C and wind < 2 m/s then ozone will be in the Unhealthy AQI category
- Sometimes called "rules of thumb"
- Commonly used in many forecasting programs as a primary forecasting method or combined with other methods
- Best suited to help forecast high pollution or low pollution events, or pollution in a particular air quality index category range rather than an exact concentration

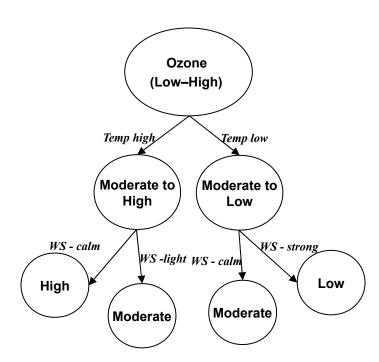
Criteria - Example

Conditions needed for high pollution by month

Month	Daily Temp Max (above °C)	Daily Temp Range (above °C)	Daily Wind Speed (below m/s)	Wind Speed 15-21 UTC (below m/s)	Prior Day's Ozone 1-hr Max (above ppb)
Apr	26	11	4	3	70
May	29	11	4	5	70
Jun	29	11	3	5	70
Jul	33	11	3	4	70
Aug	33	11	3	4	70
Sep	31	10	3	4	75
Oct	31	10	3	3	75

To have a high pollution day in July

Lambeth, 1998


- maximum temperature must be at least 33° C,
- temperature difference between the morning low and afternoon high must be at least 11° C
- average daytime wind speed must be less than 3 m/s,
- afternoon wind speed must be less than 4 m/s, and
- the prior day's peak 1-hr ozone concentration must be at least 70 ppb.

Section 4 – What Are We Forecasting?

Classification and Regression Tree (CART)

- CART is a statistical procedure designed to classify data into dissimilar groups.
- Similar to criteria method; however, it is objectively developed.
- CART enables a forecaster to develop a decision tree to predict pollutant concentrations based on predictor variables (usually weather) that are well correlated with pollutant we Forecasting?

concentrations

CART - How It Works (1 of 2)

The statistical software determines the predictor variables and the threshold cutoff values by

- Reading a large data set with many possible predictor variables
- Identifying the variables with the highest correlation with the pollutant
- Continuing the process of splitting the data set and growing the tree until the data in each group are sufficiently uniform

Summary

- Wide range of forecast tools
- Each type has advantages and disadvantages
- More tools result in better forecasts
- Consensus forecasting can produce better results

Section 13 Developing a Forecasting Program

Understanding Users' Needs
Understanding the Processes that Control Air Quality
Choosing Forecasting Tools
Data Types, Sources, and Issues
Forecasting Protocol
Forecast Verification

Understanding Users' Needs

- Success depends on forecast
 - Accuracy
 - Meeting the users' needs
- Three main uses (Section 5)
 - Protect public health
 - Operate emissions reduction programs
 - Conduct special monitoring
- Consider these issues
 - Size of forecast domain
 - Population affected
 - Pollutants to forecast
 - Industries to be controlled
 - Smog transport
- Process
 - Gather stakeholders
 - List of questions (next three slides)

Understanding Users' Needs – Forecast Specification Questions (1 of 3)

Who will use the forecast?

- For how many months are forecasts needed?
 - Certain season (summer and fall)
- What periods should a forecast cover?
 - Current and next day
 - 1-5 days
- Are multi-day forecasts needed for weekend/holiday periods?

Understanding Users' Needs – Forecast Specification Questions (2 of 3)

- What are the accuracy requirements?
 - Define target first
 - Make sure it is reasonable
- What area do the air quality forecasts cover?
 - Regional maximum
 - Sub-regions or monitoring sites
- Are written forecast discussions of predicted weather and air quality conditions needed?

AREP GAW

Understanding Users' Needs – Forecast Specification Questions (3 of 3)

- How should forecasts be disseminated?
 - E-mail, fax, phone
 - Web site
- When should forecasts be issued to meet deadlines?
- Should forecasts be re-issued? If so, under what conditions?
- Should forecasts be made for specific concentrations or concentration ranges (e.g., AQI or API categories)?
- How should missed forecasts be handled?

Choosing Forecasting Tools (1 of 3)

- General guidelines
 - Start with simple tools and add complex tools later
 - Consensus approach to forecasting works best
 - Establish a reliable product (not necessarily the most accurate)
 - Persistence, time series, and climatology tools will never identify a significant change in air quality
 - Regression, CART, and neural networks require time to develop and validate, but are usually more accurate than persistence
 - Photochemical modeling can be more accurate, but requires significant resources
- Resource considerations
 - Development costs
 - Time needed to forecast

Choosing Forecasting Tools (2 of 3)

- Severity of problem
 - Seasons, number of pollutants to forecast
 - Limited problem use simple methods
 - Severe problem use many forecasting methods
- Consensus forecasting works best
 - More tools provide a better forecast
 - Cumulative knowledge of all forecasting tools is greater than using a single tool
 - As the pollution problem becomes more complex, no single forecasting tool can reliably predict বাশি শ্ৰেণিশি শ্ৰিণিশি বিভিন্ত কিন্তু factors

Choosing Forecasting Tools (3 of 3)

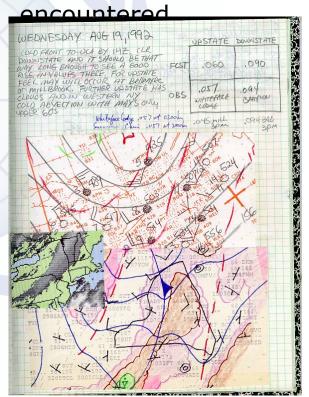
- Experience
 - Some forecasting tools require extensive experience
 - Working with a local university/firms to develop tools can be beneficial
 - No tool can replace forecaster experience

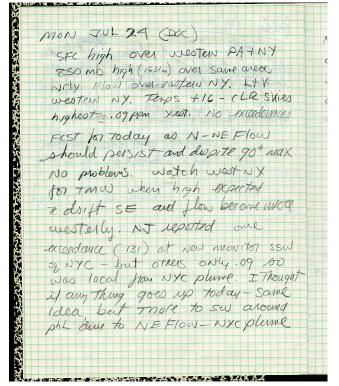
Forecast Verification Overview

- Comparing forecasts to actual observations to quantify success of forecasting program
- Topics
 - Why verify air quality forecasts?
 - Schedule
 - Types of verification: categorical and discrete
 - Contingency table and examples
 - Performance targets
 - Forecast retrospective

Forecast Verification

- Why verify air quality forecasts?
 - Quantify the performance of forecasters and/or the forecast program
 - Identify trends in forecast performance over time
 - Quantify improvements from new (or changes in) forecasting methods/tools
 - Compare verification statistics to those from other agencies that forecast air pollution
 - Demonstrate the performance of forecasts to program participants, stakeholders, and the media


Forecast Verification Schedule (1 of 4)


- Daily verification
 - Can identify systematic problems
 - Can identify mistaken analysis of events
 - Can identify problems with data
 - Provides opportunity for mid-season procedure corrections
- Seasonal verification
 - Identifies if model/methodology is appropriate
 - Benchmarks performance of models and forecasters

Forecast Verification Schedule (2 of 4)

- Daily
 - Each morning, review prior day observations and forecasts.
 - Keep a log book of performance and problems

Summary (1 of 2)

- Understanding users' needs
 - Size of forecast domain
 - Population affected
 - Pollutants to forecast
 - Industries to be controlled
 - Smog transport
- Understanding the processes that control air quality
 - Literature reviews
 - Data analysis
- Choosing forecasting tools
 - Start with simple methods
 - Use more than one method
 - Forecaster experwence is critical

Summary (2 of 2)

- Data types, sources, and issues
 - Standardize units
 - Continuously evaluate data quality
- Forecasting protocol
 - Written procedures for forecasting
 - Saves time and improves quality of forecast
- Forecast verification
 - Evaluate daily, monthly, seasonally
 - Categorical and discrete statistics
 - Set realistic goals
 - Some misses will occur

