Air Quality Network Design for Urban and Rural Model Validation

Las Quintas, Cuernavaca, Mexico Oct. 24th -26th, 2002

Pedro Oyola CONAMA, Chile

Introduction

- In 1997 Santiago Metropolitan Region was declared saturated with TSP, PM₁₀, CO, O₃ and latent for NO₂.
- An Atmospheric Decontamination and Prevention Programme for the Metropolitan Region was initiated.
- An intensive program to reduce the impact from mobile sources, specially public transportation system was started.

Mapocho valley topographical characteristics

Santiago Metropolitan Region's Air Quality Network

Metereological Network

Analytical Techniques

- Particle Induced X-ray Emission PIXE & XRF
 Detection limit 0.5 5 ng/m³, accuracy and precision 5 10 %
 > 20 elements (Cu, As, Mo, S, Se, Pb, Br, Cl, Ni, V, Cr, etc)
- Ion & Gas Chromatography IC &GC MS For cations and anions (NH⁺₄, SO ⁻²₄,NO ⁻₃, Cl ⁻, etc) & N- alkanes and PAH
- Reflectance and IR
 Black and Organic Carbon
 Gravimetric analysis
- Aerosol mass concentration

Data Analysis

- Absolute Principal Factor Analysis
- Hierarchical Cluster Analysis
- Stepwise Multiple Linear Regression
- Molecular Diagnostic Ratios

Considerations in the design of ambient air monitoring networks

- Regulatory control
- Size of the city
- Density of Population
- Emission (stationary, mobile & diffuse sources)
- Meteorology
- Topography
- Effects (climate, health, materials, land-use)
- Air pollution forecasting

Emissions

• In large cities, vehicle emission are usually the most important

- In small cities, there may be sources specific (and limited) to the area that are significant (smelters, house heating, biomass burning, etc.)
- Fixed sources are easiest to control, moving sources are harder
- Local emissions may mislead the interpretation of the results.
- Monitoring site representativeness is needed

Monitoring site representativeness, PM-10

Data from a monitoring site should be representative of the community, independent of local sources.

Local traffic influence

No local traffic influence

Topography

May determine the concentration of pollutants in certain areas

- Controls the local wind pattern
- Limits the spatial extent of pollutants

Environmental grouping

- Cluster analysis of the data among the stations is used to obtain groups with similar temporal behavior
- These groups are similar for PM10 and ozone
- The groups are independent of the season
- Topography of the city is probably responsible for the configuration of the groups

• Determine the concentration levels of pollutants in a city

• Determines the time variation of pollutants

• Wind and mixing layer height are probably the most important meteorological parameters

• Has hourly, daily and seasonal variation very hard to predict.

Episode situation at Pudahuel

A cloud with high PM₁₀ levels is transported to Parque from Pudahuel area by low level winds

Daily samples

Daily Samples- 6:00 a 18:00 hrs. Total anions concentrations (Cl⁺+NO.₂⁻+NO₃⁻+SO₄⁻) y PM 2.5 Pudahuel July September 2000

Nightly samples

Nightly samples - 18:00 a 6:00 hrs. Total anions concentrations (Cl^{*}+NQ₂^{*}+NQ₃^{*}+SQ₄^{**}) y PM 2.5 Pudahuel July - September 2000

Composition PM 2.5, Pudahuel June - September 2000,

Episode Type "A" (J. Rutllant 1994)

Meteorology, Episode type "A" (after J. Rutllant, 1994)

- Formation of a Coastal Low between two high preassure systems: the Semipermanet Pacific and migratory cold high located at Central-North Argentina
- Irruption of a mid troposphere Warm Ridge above Central Chile.
- Post frontal conditions
- East wind component and warming at low levels. Marked stability conditions. Reduction of the mixing layer and ventilation factor.
- Zonal circulation index (at 500 hpascal): regular to high synoptic patterns will move eastward relatively fast.
- Frequency : 70 % of total number of episodes (Autumn-Winter time).

Meteorological Parameters at Lo Prado

Elemental and Organic Carbon and PM_{2.5} 24 hrs runing averages, at Pudahuel, July 15 - 19th, 1999. Episode type "A"

Air mass trajectory simulations

- A meteorological network (16 with sensors at 10 m, 24 m profiling tower and a LAP RASS)
- 56x56 km model domain
- Hourly windfields with a resolution of 1x1 km, modeled with a diagnostic one layer model.
- Sensible heat flux and friction velocity has been determined from profile measurements (24 m profiling tower) at one suburban station
- Of interest is to quantify:
 - The frequency with which the air mass passes specific parts of the city.
 - The total time the air mass has been within the Metropolitan Area

Concentration (µg/m3) PM10 Santiago - Winter 1999

Average concentration 118,42 µg/m3

Concentration (µg/m³) PM₁₀ Parque O`Higgins (Episode July 29th- 1 August 1st 1999)

Total Concentration = 166,01 µg/m3

Meteorological Conditions Air Pollution = Emission + Ventilation

Lower population exposition

Critical Episodes PM10 at Pudahuel

Lower population exposition

PM₁₀ Concentrations Winter Period Metropolitan Region

Environmental gain

Health effects due a lower population exposition - Winter 2002

PM₁₀ releated health outcomes	Avoided cases	Monetized benefit (US\$)
Premature mortality	322	115.018.987
AHRSP	226	632.386
AH COPD	713	2.566.532
AH Cardiovascular	244	926.796
AHCardio Ischemic	139	657.091
AH Pnemony	191	697.385
Asthma attacks	206.637	1.446.460
Acute bronchitis	45.896	458.962
Emergency room visits	19.660	1.041.972
Days with respiratory difficulties	2.611.714	2.611.714
Work loss days	294.880	5.602.725
Minor restricted activity days	902.561	8.123.047
MRADs days	1.089.086	8.712.685
Lower respiratory symptoms	25.332	75.995
Upper respiratory symptoms	14.771	51.698
Respiratory illness	1.332.033	5.328.131
Total		153.952.565

Georeferential Model PM10 Dispersion Model May-June 2000

Acknowledgements

