Chemical Weather Forecasting Perspectives & Challenges

Gregory R. Carmichael Department of Chemical & Biochemical Engineering Center for Global & Regional Environmental Research and the University of Iowa

GURME The WMO Gaw Urban Research Meteorology and Environmental Project

Overview

Meetings

Strategic Plan

Pilot Projects

Modeling Information

General Information on Urban

Back to GRC homepage

Reports

Links

Pollution

Scientific Advisory Group(SAG)

The GURME project arose in response to the requests for assistance by many National Meteorological Services(NMSs) dealing with urban issues, and in recognition that the management of urban environments requires special attention. The genesis of the project began in the Twelfth World Meteorological Congress (1995) where it was determined that meteorological and climatological aspects of urban environments should

http://www.cgrer.uiowa.edu/people/carmichael/GURME/GURME.html

and the Role of the National Meteorological Services was convened in Geneva in October 1996 to help define issues and needs and to plan for future WMO activities related to urban environments.

Why Forecast Air Quality?

• Provide information to the public *operationally* to help them better manage their health and welfare (heat stress, comfort, pollen, flight operations, large scale pollution/fire events, safer more effective conditions to apply chemicals)

Why Forecast Air Quality?

- Strategic issues if weather services don't do it others certainly will !
- Weather infrastructure is invaluable measurement, models, assimilation expertise.

WITH OUK NEW EQUIPMENT, OUR SUPERCOMPUTER MODELS AND ENHANCED PROGRAMMING, WE WILL NOW BE ABLE TO BE WRONG MUCH QUICKER! Fly here to sample high O LET US KNOW WHEN THE HAWK GETS HERE WE'RE WATCHING THIS THING LIKE A HAWK!

Ace-Asia April/May 2001

CFORS/STEM Model Data Flow Chart

Frontal outflow of biomass burning plumes E of Hong Kong

4

3

2

1

0 110 115

120

125

130

(ug/m3)

0.8 to 1 0.6 to 0.8

0.4 to 0.6 0.2 to 0.4

0 to 0.2

140

1+

135

Observed aerosol potassium (R. Weber, Georgia Tech)

Flight Tracks Along the Asian Pacific Rim During the TRACE-P Mission

Results from Trace-P Intercomparison Study

Table 3. Mean difference of CO, RMS difference, correlation, and slope for the combination of DC-8 Flights 7 - 17. Units for mean difference and RMS difference are ppbv.

Model	Mean Difference	RMS Difference	Correlation	Slope	
FRSGC/UCI	-36.9	70.1	0.65	0.37x + 64.5	
GEOS-CHEM	-20.6	69.5	0.56	0.41x + 73.5	
Meso-NH	-49.7	87.1	0.44	0.23x + 74.2	
RAQMS – Global	-67.3	94.4	0.75	0.22x + 55.4	
RAQMS – Regional	-56.3	91.4	0.48	0.16x + 75.3	
STEM	14.6	70.6	0.61	0.62x + 75.4	
UMD CTM	-34.3	70.9	0.62	0.31x + 77.1	

Vis5D 3-D Display (duststorm.v5d)

NASA-Seawifs

00:00:00 08 Apr 01 1 of 48 Sunday Dust Storm Event Pink:Dust Isosurface(70 micro-g/ Yellow:SO4 Isosurface(5 micro-g/

The CFORS forecast (upper left) of the two dust systems are shown above. The dust plume (pink) represents the region with dust concentrations greater than 200 µgrams/m³. White indicates clouds. The SeaWifs satellite image (upper right) also clearly shows the accumulation of dust spiraling into the Low Pressure center. Also note the strong outflow of dust in the warm sector "ahead" of the front over the Japan Sea. The two systems are clearly seen in the satellite derived TOMS-AI (aerosol index) (lower right). The dust event is clearly seen in the China SEPA air pollution menitoring network. Lower left hand namel shows extremely large ground level concentrations

These dust outbreaks caused severe problems in China

These photos are reduced-resolution versions of photos taken by Dr. Zev Levin while visiting Baicheng, Jilin Province, China (NE of Beijing) during the dust storm. The first two were taken on April 7th. The third was taken on April 8th. The two buildings seen in the foreground of the third image are also seen in the second

From P. Westphals web site: http://www.nrlmry.navy.mil/aerosol/Case_studies/20010413_epac/

Accurate Calculation of Photolysis Rates is a Critical Element in Air Quality Forecasting

Data from Shetter et al.

Local Time

Local Time

Data from Clarke et al.

Species and Variables Delow IRm IRm to 3 km Above 3 km Observed Modeled R Observed Modeled R Observed Modeled R 00served Modeled R										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Species and Variables	Below 1km			1 km to 3km			Above 3km		
Wind Speed (m/s)8.277.570.83711.1110.880.8931.9231.340.984Temperature (K)288.346287.5020.988278.309277.4180.993248.722250.0880.993H ₂ O (ppby)13992,714086,30.986528.06997.40.961117.441534.050.993CO (ppby)218.76203.450.728188.3196.00.514122.41122.730.614O ₃ (ppby)51.0649.960.78652.8251.210.71861.4359.410.362Ethane (ppby)0.620.4630.8290.4800.4140.7070.1540.1890.70Ethyne (ppby)0.620.4630.6930.5540.5260.640.2490.2100.612Ethyne (ppby)0.180.200.7620.1130.1610.2940.03350.04110.493SO ₂ (ppby)1.551.040.6940.6771.0490.2780.1920.1030.66SO ₄ (ppby)1.581.310.650.8261.0130.4950.2180.1900.725Acetone (ppby)0.550.570.8210.3140.5080.630.1380.1340.547NO ₂ (ppby)0.550.570.210.120.260.30.0340.0050.73NO ₂ (ppby)0.550.570.210.120.260.30.0340.0050.53N		Observed	Iviodeled	R	Observed	Iviodeled	R	Observed	Iviodeled	R
Temperature (K) 288.346 287.302 0.988 277.418 0.995 248.722 250.088 0.993 H ₂ O (ppmy) 13992.7 14086.3 0.98 6528.0 6997.4 0.96 1117.44 1534.05 0.993 O (ppby) 218.76 203.45 0.728 188.3 196.0 0.514 122.41 122.73 0.614 O_3 (ppby) 51.06 49.96 0.786 52.82 51.21 0.718 61.43 59.41 0.362 Ethane (ppby) 1.97 1.60 0.881 1.69 1.466 0.789 0.907 0.81 0.731 Propare (ppby) 0.62 0.463 0.829 0.484 0.414 0.707 0.154 0.189 0.701 Ethone (ppby) 0.78 0.63 0.693 0.554 0.526 0.64 0.249 0.210 0.612 Ethone (ppby) 0.18 0.20 0.762 0.113 0.161 0.294 0.0335 0.0411 0.493 SO ₄ (ppby) 1.55 1.04 0.694 0.677 1.049	Wind Speed (m/s)	8.27	1.51	0.837	11.11	10.88	0.89	31.92	31.34	0.984
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I emperature (K.)	288.340	287.002	0.988	218.309	277.418	0.993	248.722	200.088	0.993
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13992.7	14086.3	0.98	0028.0	104.0	0.96	1117.44	1034.00	0.906
O_3 (ppby) $J1.06$ 49.96 0.780 $J2.82$ $J1.21$ $U.113$ 61.43 $J9.41$ $U.362$ Ethane (ppby) 1.97 1.60 0.881 1.69 1.466 0.789 0.907 0.81 0.731 Propane (ppby) 0.62 0.463 0.829 0.480 0.414 0.707 0.154 0.189 0.701 Ethyne (ppby) 0.78 0.63 0.693 0.554 0.526 0.64 0.249 0.210 0.612 Ethere (ppby) 0.18 0.20 0.762 0.113 0.161 0.294 0.0335 0.0411 0.493 SO_2 (ppby) 1.55 1.04 0.694 0.677 1.049 0.278 0.192 0.103 0.66 SO_4 (ppby) 1.58 1.31 0.65 0.826 1.013 0.495 0.218 0.190 0.725 Acetone (ppby) 1.26 1.40 0.587 1.205 1.315 0.397 0.686 0.861 0.487 PAN (ppby) 0.941 1.40 0.458 0.931 1.315 0.397 0.686 0.361 0.487 PAN (ppby) 0.277 0.25 0.21 0.12 0.26 0.3 0.034 0.005 0.055 NO (ppby) 0.035 0.041 0.443 0.0335 0.0365 0.07 0.053 0.007 0.245 RNO_3 (ppby)* 0.046 0.059 0.836 0.0314 0.0453 0.792 0.0116 <t< td=""><td></td><td>218.70</td><td>203.45</td><td>0.728</td><td>188.3</td><td>196.0</td><td>0.514</td><td>122.41</td><td>122.73</td><td>0.014</td></t<>		218.70	203.45	0.728	188.3	196.0	0.514	122.41	122.73	0.014
Ethane (ppby) 1.97 1.60 0.881 1.69 1.466 0.783 0.907 0.81 0.731 Propane (ppby) 0.62 0.463 0.829 0.480 0.414 0.707 0.154 0.189 0.70 Ethyne (ppby) 0.78 0.63 0.693 0.554 0.526 0.64 0.249 0.210 0.612 Ethyne (ppby) 0.18 0.20 0.762 0.113 0.161 0.294 0.0335 0.0411 0.493 SO ₂ (ppby) 1.55 1.04 0.694 0.677 1.049 0.278 0.192 0.103 0.66 SO ₄ (ppby) 1.58 1.31 0.65 0.826 1.013 0.495 0.218 0.190 0.725 Acetone (ppby) 1.26 1.40 0.587 1.205 1.315 0.394 0.967 0.861 0.367 Acetone -Singh(ppby) 0.941 1.40 0.458 0.931 1.315 0.397 0.686 0.861 0.487 PAN (ppby) 0.55 0.57 0.802 0.314 0.508 0.63 0.188 0.134 0.547 NO ₂ (ppby) 0.035 0.041 0.443 0.0335 0.0365 0.07 0.265 0.73 RNO ₃ (ppby) 0.046 0.059 0.836 0.0314 0.0453 0.792 0.0116 0.0125 0.73 RNO ₃ (ppby) 0.236 0.190 0.594 0.193 0.166 0.356 0.077	C ₃ (ppgy)	1.00	49.90	0.780	1.62	1 466	0.716	01.43	0.91	0.302
Propane (ppby) 0.62 0.483 0.829 0.480 0.414 0.107 0.134 0.139 0.169 Ethyne (ppby) 0.78 0.63 0.693 0.554 0.526 0.64 0.249 0.210 0.612 Ethene (ppby) 0.18 0.20 0.762 0.113 0.161 0.294 0.0335 0.0411 0.493 SO ₂ (ppby) 1.55 1.04 0.694 0.677 1.049 0.278 0.192 0.103 0.66 SO ₄ (ppby) 1.58 1.31 0.65 0.826 1.013 0.495 0.218 0.190 0.725 Acetone (ppby) 1.26 1.40 0.587 1.205 1.315 0.394 0.967 0.861 0.367 Acetone -Singl(ppby) 0.941 1.40 0.458 0.931 1.315 0.397 0.686 0.861 0.487 PAN (ppby) 0.55 0.57 0.802 0.314 0.508 0.63 0.188 0.134 0.547 NO ₂ (ppby) 0.27 0.25 0.21 0.12 0.26 0.3 0.034 0.005 0.07 NO (ppby) 0.266 0.397 0.632 0.016 0.0125 0.73 RNO ₃ (ppby) 0.046 0.059 0.836 0.0314 0.0453 0.792 0.016 0.0125 0.73 RNO ₃ (ppby) 0.236 0.356 0.366 0.3314 0.0453 0.792 0.016 0.0125 0.73 <t< td=""><td>Ethane (ppby)</td><td>1.97</td><td>1.60</td><td>0.881</td><td>1.69</td><td>1.466</td><td>0.789</td><td>0.907</td><td>0.81</td><td>0.731</td></t<>	Ethane (ppby)	1.97	1.60	0.881	1.69	1.466	0.789	0.907	0.81	0.731
Ethene (ppby)0.780.030.0350.0340.0200.040.2490.2490.2100.012 SO_2 (ppby)1.551.040.6940.6771.0490.2940.03350.04110.493 SO_4 (ppby)1.551.040.6940.6771.0490.2780.1920.1030.66 SO_4 (ppby)1.581.310.650.8261.0130.4950.2180.1900.725Acetone (ppby)1.261.400.5871.2051.3150.3940.9670.8610.367Acetone Singh(ppby)0.9411.400.4580.9311.3150.3970.6860.8610.487PAN (ppby)0.550.570.8020.3140.5080.630.1880.1340.547NO_2 (ppby)0.270.250.210.120.260.30.0340.0050.05NO (ppby)0.0350.0410.4430.03350.03650.070.0530.0070.245RNO_3 (ppby)*0.0460.1180.7450.03140.0970.6320.01160.01250.73Methyl Ethyl Ketone (ppby)0.2360.3560.3660.1930.3330.2280.0770.1220.497H_2O_2 (ppby)0.8451.030.5381.1051.0910.5340.4330.4640.52Formaldehyde (ppby)*0.5960.5910.6750.3280.4480.420.0970.1400.	Fropane (ppoy)	0.02	0.405	0.829	0.460	0.414	0.707	0.104	0.169	0.70
Entrie (ppby)0.180.200.7620.1730.1810.2940.03330.04110.493 SO_2 (ppby)1.551.040.6940.6771.0490.2780.1920.1030.66 SO_4 (ppby)1.581.310.650.8261.0130.4930.9670.8610.367Acetone (ppby)1.261.400.5871.2051.3150.3940.9670.8610.367Acetone -Singh(ppby)0.9411.400.4580.9311.3150.3970.6860.8610.487PAN (ppby)0.550.570.8020.3140.5080.630.1880.1340.547NO2 (ppby)0.270.250.210.120.260.30.0340.0050.05NO (ppby)0.0350.0410.4430.03350.03650.070.0530.0070.245RNO3 (ppby)*0.0460.1180.7450.03140.0970.6320.01160.01250.73RNO3 (ppby)0.2360.1900.5940.1930.1660.3560.0770.0670.49Methyl Ethyl Ketone* (ppby)0.2360.3560.3660.1930.3330.2280.0770.1220.497H_2O_2 (ppby)*0.8451.030.5381.1051.0910.5340.4330.4640.52Formaldehyde (ppby)*0.5960.5910.6750.3280.4480.420.0970.1400.592	Ethyne (ppoy)	0.76	0.05	0.095	0.554	0.520	0.04	0.249	0.210	0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethene (ppoy)	0.18	0.20	0.762	0.113	1.040	0.294	0.0335	0.0411	0.493
Acetone (ppby)1.361.310.050.8261.0130.4950.2180.1960.725Acetone (ppby)1.261.400.5871.2051.3150.3940.9670.8610.367Acetone -Singh (ppby)0.9411.400.4580.9311.3150.3970.6860.8610.487PAN (ppby)0.550.570.8020.3140.5080.630.1880.1340.547NO2 (ppby)0.270.250.210.120.260.30.0340.0050.05NO (ppby)0.0350.0410.4430.03350.03650.070.0530.0070.245RNO3 (ppby)*0.0460.0590.8360.03140.04530.7920.01160.01250.73RNO3 (ppby)0.2660.1900.5940.1930.1660.3560.0770.0670.49Methyl Ethyl Ketone* (ppby)0.2360.3560.3660.1930.3330.2280.0770.1220.497H_2O_2 (ppby)*0.8451.030.5381.1051.0910.5340.4330.4640.52Formaldehyde (ppby)*0.5960.5910.6750.3280.4480.420.0970.1200.606Formaldehyde (ppby)*0.5960.5910.6750.3280.5570.3520.0970.1490.592	$SO_2(pp0y)$	1.55	1.04	0.094	0.077	1.049	0.278	0.192	0.105	0.00
Acetone (ppby)1.201.400.3871.2031.3150.3940.9070.8010.307Acetone -Singh(ppby)0.9411.400.4580.9311.3150.3970.6860.8610.487PAN (ppby)0.550.570.8020.3140.5080.630.1880.1340.547NO2 (ppby)0.270.250.210.120.260.30.0340.0050.05NO (ppby)0.0350.0410.4430.03350.03650.070.0530.0070.245RNO3 (ppby)*0.0460.0590.8360.03140.04530.7920.01160.01250.73RNO3 (ppby)0.0460.1180.7450.03140.0970.6320.01160.0240.653Methyl Ethyl Ketone (ppby)0.2360.1900.5940.1930.1660.3560.0770.0670.49H_2O2 (ppby)*0.8451.030.5381.1051.0910.5340.4330.4640.52Formaldehyde (ppby)*0.5960.5910.6750.3280.4480.420.0970.1200.606	A gatana (mahra)	1.20	1.51	0.00	1.020	1.015	0.490	0.210	0.190	0.742
Acetonic - Singal ppov) 0.941 1.40 0.435 0.931 1.315 0.397 0.086 0.861 0.487 PAN (ppby) 0.55 0.57 0.802 0.314 0.508 0.63 0.188 0.134 0.547 NO ₂ (ppby) 0.27 0.25 0.21 0.12 0.26 0.3 0.034 0.005 0.05 NO (ppby) 0.035 0.041 0.443 0.0335 0.0365 0.07 0.053 0.007 0.245 RNO ₃ (ppby)* 0.046 0.059 0.836 0.0314 0.0453 0.792 0.0116 0.0125 0.73 RNO ₃ (ppby) 0.046 0.118 0.745 0.0314 0.097 0.632 0.0116 0.024 0.653 Methyl Ethyl Ketone* (ppby) 0.236 0.190 0.594 0.193 0.166 0.356 0.077 0.067 0.497 H_2O_2 (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606	Acetone (ppoy)	1.20	1.40	0.267	1.200	1.315	0.394	0.907	0.801	0.307
PAN (ppby) 0.35 0.37 0.802 0.314 0.308 0.63 0.188 0.134 0.347 NO_2 (ppby) 0.27 0.25 0.21 0.12 0.26 0.3 0.034 0.005 0.05 NO (ppby) 0.035 0.041 0.443 0.0335 0.0365 0.07 0.053 0.007 0.245 RNO_3 (ppby)* 0.046 0.059 0.836 0.0314 0.0453 0.792 0.0116 0.0125 0.73 RNO_3 (ppby)* 0.046 0.118 0.745 0.0314 0.097 0.632 0.0116 0.024 0.653 Methyl Ethyl Ketone* (ppby) 0.236 0.190 0.594 0.193 0.166 0.356 0.077 0.067 0.49 Methyl Ethyl Ketone (ppby) 0.236 0.356 0.366 0.193 0.333 0.228 0.077 0.122 0.497 H_2O_2 (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328	Acetone - Singhi ppov)	0.941	1.40	0.458	0.931	1.313	0.397	0.686	0.861	0.487
$NO_2 (ppby)$ 0.21 0.23 0.21 0.12 0.26 0.3 0.034 0.005 0.03 $NO (ppby)$ 0.035 0.041 0.443 0.0335 0.0365 0.07 0.053 0.007 0.245 $RNO_3 (ppby)^*$ 0.046 0.059 0.836 0.0314 0.0453 0.792 0.0116 0.0125 0.73 $RNO_3 (ppby)^*$ 0.046 0.118 0.745 0.0314 0.097 0.632 0.0116 0.024 0.653 $Methyl Ethyl Ketone* (ppby)$ 0.236 0.190 0.594 0.193 0.166 0.356 0.067 0.49 $Methyl Ethyl Ketone (ppby)$ 0.236 0.356 0.366 0.193 0.333 0.228 0.077 0.122 0.497 $H_2O_2 (ppby)$ 0.845 1.03 0.538 1.105 1.091 0.534 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0	PAN (pppy)	0.55	0.57	0.802	0.314	0.208	0.03	0.188	0.134	0.547
NO (ppby) 0.035 0.041 0.443 0.0355 0.0365 0.07 0.053 0.007 0.245 RNO_3 (ppby)* 0.046 0.059 0.836 0.0314 0.0453 0.792 0.0116 0.0125 0.73 RNO_3 (ppby) 0.046 0.118 0.745 0.0314 0.097 0.632 0.0116 0.024 0.653 Methyl Ethyl Ketone* (ppby) 0.236 0.190 0.594 0.193 0.166 0.356 0.077 0.067 0.49 Methyl Ethyl Ketone (ppby) 0.236 0.356 0.366 0.193 0.333 0.228 0.077 0.122 0.497 H_2O_2 (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606		0.27	0.25	0.21	0.12	0.26	0.3	0.034	0.005	0.05
RNO ₃ (ppby) ^m 0.046 0.039 0.836 0.0314 0.0453 0.792 0.0116 0.0125 0.73 RNO ₃ (ppby) 0.046 0.118 0.745 0.0314 0.097 0.632 0.0116 0.024 0.653 Methyl Ethyl Ketone* (ppby) 0.236 0.190 0.594 0.193 0.166 0.356 0.077 0.067 0.49 Methyl Ethyl Ketone (ppby) 0.236 0.356 0.366 0.193 0.333 0.228 0.077 0.122 0.497 H ₂ O ₂ (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606	NU (pppy)	0.035	0.041	0.443	0.0335	0.0365	0.07	0.053	0.007	0.245
RNO3 (ppby) 0.046 0.118 0.745 0.0314 0.097 0.832 0.0116 0.024 0.835 Methyl Ethyl Ketone* (ppby) 0.236 0.190 0.594 0.193 0.166 0.356 0.077 0.067 0.49 Methyl Ethyl Ketone (ppby) 0.236 0.356 0.366 0.193 0.333 0.228 0.077 0.122 0.497 H_2O_2 (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606 Eormaldehyde (mthy) 0.596 0.711 0.721 0.328 0.557 0.352 0.097 0.149 0.592	RINO ₃ (pppy)**	0.046	0.009	0.830	0.0314	0.0403	0.792	0.0116	0.0125	0.73
Methyl Ethyl Ketone (ppby) 0.236 0.190 0.394 0.193 0.186 0.336 0.077 0.087 0.49 Methyl Ethyl Ketone (ppby) 0.236 0.356 0.366 0.193 0.333 0.228 0.077 0.122 0.497 H_2O_2 (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606 Formaldehyde (mby) 0.596 0.711 0.721 0.328 0.557 0.352 0.097 0.149 0.592	RINU ₃ (ppby)	0.046	0.118	0.745	0.0314	0.097	0.032	0.0116	0.024	0.623
Mierry Ethyl Ketore (ppby) 0.236 0.356 0.193 0.333 0.228 0.077 0.122 0.497 H_2O_2 (ppby) 0.845 1.03 0.538 1.105 1.091 0.534 0.433 0.464 0.52 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606 Formaldehyde (mby) 0.596 0.711 0.721 0.328 0.557 0.352 0.097 0.149 0.592	Mathed Ethyl Ketone" (ppoy)	0.230	0.190	0.094	0.193	0.100	0.300	0.077	0.067	0.49
H_2O_2 (ppby) 0.845 1.03 0.338 1.105 1.091 0.334 0.433 0.464 0.32 Formaldehyde (ppby)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606 Formaldehyde (mby) 0.596 0.711 0.721 0.328 0.557 0.352 0.097 0.149 0.592	Ivietnyi Etnyi Ketone (ppov)	0.230	0.300	0.300	0.193	1 001	0.228	0.077	0.122	0.497
Formaldenyde (pppy)* 0.596 0.591 0.675 0.328 0.448 0.42 0.097 0.120 0.606 Formaldenyde (pppy)* 0.596 0.711 0.721 0.328 0.557 0.352 0.007 0.140 0.582	$H_2 \cup_2 (pppy)$	0.845	1.03	0.238	1.105	1.091	0.234	0.433	0.464	0.22
- Konneldehtide (minist) - E. E. N. 6. E. E. (11. EE (21. E. E. X.X. E. E. N.Y. EE (X.Y. E. E. 12.4. EE (22.4.	Formaldenyde (pppy)"	0.596	0.591	0.675	0.328	0.448	0.42	0.097	0.120	0.606
Formanderiyde (Med) 0.350 0.711 0.721 0.326 0.377 0.322 0.097 0.149 0.365	Formaldehyde (ppby)	0.596	0.711	0.721	0.328	0.557	0.352	0.097	0.149	0.583
Acetaldehyde (ppby) 0.811 0.668 -0.31 0.545 0.691 -0.09 0.301 0.336 0.11	Acetaldehyde (ppby)	0.811	0.668	-0.31	0.545	0.691	-0.09	0.301	0.336	0.11
Acetaldehyde-Singh (ppby) 0.480 0.668 0.54 0.315 0.691 0.277 0.141 0.336 0.609	Acetaldehyde-Singh (ppby)	0.480	0.668	0.54	0315	П 691	n 277	n 141	0.336	IN 609
OH (ppty) 0.095 0.082 0.577 0.0899 0.0968 0.761 0.104 0.121 0.602	OH (pptv)	0.095	0.082	0.577	0.0899	0.0968	0.761	0.104	0.121	0.602
HO ₂ (ppty) 9.30 10.04 0.64 9.67 12.15 0.864 7.41 11.16 0.794	HO₂ (ppty)	9.30	10.04	0.64	9.67	12.15	0.864	7.41	11.16	0.794
Benzene + Toluene (ppby) 0.330 0.190 0.633 0.184 0.156 0.495 0.053 0.044 0.641	Benzene + Toluene (ppby)	0.330	0.190	0.633	0.184	0.156	0.495	0.053	0.044	0.641
BC (yg/std m3) 0.84 0.67 0.65 0.836 0.558 0.22 0.257 0.158 0.34	BC (yg/std m3)	0.84	0.67	0.65	0.836	0.558	0.22	0.257	0.158	0.34
AOE @550nm (/km) 0.0615 0.0706 0.63 0.0389 0.0511 0.345 6.83×10 ⁻³ 8.32×10 ⁻³ 0.574	AOE @550nm (/km)	0.0615	0.0706	0.63	0.0389	0.0511	0.345	6.83×10 ⁻³	8.32×10-3	0.574
J[NO1 (1/s) 0.0055 0.0039 0.741 0.0082 0.0067 0.74 0.0116 0.0106 0.72	$J[NO_2](1/s)$	0.0055	0.0039	0.741	0.0082	0.0067	0.74	0.0116	0.0106	0.72
$J[O_3 \rightarrow O_2 + O^1D] (1/s) = 1.95 \times 10^{-5} 1.19 \times 10^{-5} 0.839 2.78 \times 10^{-5} 1.93 \times 10^{-5} 0.86 4.15 \times 10^{-5} 3.22 \times 10^{-5} 0.933$	$J[O_3 \rightarrow O_2 + O^1D] (1/s)$	1.95×10-3	1.19×10-5	0.839	2.78×10-5	1.93×10-5	0.86	4.15×10-5	3.22×10-5	0.933
J[H ₂ O ₂] (1/s) 3.94×10 ⁻⁶ 2.84×10 ⁻⁶ 0.764 5.85×10 ⁻⁶ 4.85×10 ⁻⁶ 0.793 8.41×10 ⁻⁶ 7.73×10 ⁻⁶ 0.843	$J[H_2O_3](1/s)$	3.94×10-'	2.84×10-'	0.764	5.85×10-4	4.85×10-4	0.793	8.41×10-'	7.73×10-4	0.843
J[HNO ₃] (1/s) 3.57×10 ⁻⁷ 2.47×10 ⁻⁷ 0.798 5.19×10 ⁻⁷ 4.09×10 ⁻⁷ 0.829 7.21×10 ⁻⁷ 6.37×10 ⁻⁷ 0.899	J[HNO ₃] (1/s)	3.57×10-7	2.47×10-7	0.798	5.19×10-7	4.09×10-7	0.829	7.21×10-7	6.37×10-7	0.899
J[HNO ₂ -OH+NO] (1/s) 1.21×10 ⁻³ 0.76×10 ⁻³ 0.741 1.81×10 ⁻³ 1.31×10 ⁻³ 0.743 2.58×10 ⁻³ 2.06×10 ⁻³ 0.73	JIHNO ₂ -OH+NOI (1/s)	1.21×10-3	0.76×10-3	0.741	1.81×10-3	1.31×10-3	0.743	2.58×10-3	2.06×10-3	0.73
J[HCHO→H+HCO] (1/s) 1 75×10 ⁻³ 1 22×10 ⁻³ 0 77 2 68×10 ⁻³ 2 14×10 ⁻³ 0 798 4 36×10 ⁻³ 3 76×10 ⁻³ 0 862		1 75×10-3	1 22×10-3	0.77	2.68×10-3	214×10-3	0 798	4 36×10-3	3.76×10-3	0.862
IFICHO →H ₄ +COI (1/s) 2.63×10 ⁻³ 1.77×10 ⁻³ 0.75 4.12×10 ⁻³ 3.11×10 ⁻³ 0.769 6.92×10 ⁻³ 5.22×10 ⁻³ 0.806	IHCHO-Ha+COI (1/a)	2.63×10-3	1 77×10-3	0.75	4 12×10-3	3 11×10-3	0.760	6.92×10-3	5 22×10-3	0.002
$\frac{1}{1000} = \frac{1}{1000} = 1$	UCH3CHO -CH-+HCOL(1/a)	2 30×10-4	2.02×10-4	0.700	4 08×10-4	4 05×10-4	0.20	1 13×10-3	1 19×10-3	0.000
$\frac{1}{16} = \frac{1}{16} $	$\frac{1}{1}$	2.00×10-7	2.47×10-7	0.81	5 11×10-7	4 87×10-7	0.022	1 41×10-4	1 42×10-4	1094

Table 2. Observed and STEM-Simulated Mean Values and Their Correlation Coefficients for TRACE-P DC-8 Flight #6 to #17 (orig)

2 3

* Modeled results is from the simulation without biogenic emissions.

Added Considerations for Air Quality Forecasting

- System designed for synoptic scale meteorology.
- Air quality needs pbl info, cloud fluxes
- Deficiencies in met models different requirements on transport, preservation of mass, etc.
- Sources needed at smaller scales, some sources intimately linked to meteorology
- Meteorological measurements for air quality (may) need to be designed differently (idea of urban:rural pairs)

The Future - Integrating Models and Measurements

- Test forecasting skill more emphasis on verification
- Test model resolution effects for which problems is resolution critical?
- Data assimilation/sensitivity analysis in large models is "expanding" - great opportunity to think about how these experiments can help accelerate the science
- Data assimilation satellite, surface obs....
- Characterize errors...., and co-variances, and species/species correlations and other ways of filling in data for use in assimilation
- How to best link measurements in space & time

4D-var Data Assimilation

O₃

 $O_3 + NO_2$

Trinidad Head Surface Measurements during ITCT Y2K- Model Forecasts were Provided Daily

20

ĝ

5 L

0.9

0.8

0.3

0.1

120

Observed •

132 134 136 138

Thoughts on Forecasting and Modeling

- Roles of models are expanding
- Challenge: How to make the best use of having a suite of forecasting products AND modelers in the field
- Challenge: How best to use the models to meet the mission objectives
- Challenge: How to optimally integrate measurements and model data

Final Thoughts on Priorities/Objectives

- Achieve improvements in met forecasts by considering air pollution elements.
- Add operational information to help protect public health and welfare, and to support more detailed air quality studies.
- Focus on the tools to facilitate the integration of measurements and models that are needed to support operational air quality forecasting systems.