Air Quality Forecasting and Related Services

Noel Nelson The Met Office, U.K.

Contents

- Principles of air quality forecasting
- The Met Office tools
- Applications
- Problems

Air Quality Management

- Emissions Inventory / Assessment
- Measurements, monitoring
- Modelling
- Mitigation
 - AQ Forecasts useful tool

The weather

Cannot control the weather!

Forecasting Air Quality

- Knowledgeable weather forecaster
 - Synoptic situation
 - Emissions
 - Monitored data i.e. current pollution levels
 - Local met forcing due to coastal or topographic features.
- Little infrastructure and/or low labour costs.
 Other tools stability, back trajectories, dispersion indices.

Forecasting Air Quality

Modelling

- simple box model approach
- esp. useful if emissions are known but not well defined.
- Does not incorporate chemistry

Box model (mass balance)

$C = \frac{qd}{hu} \times \frac{d}{hu}$ Inputs = forecast/synoptic

wind speed/cloud:- diagnose stability

Forecasting Air Quality

- Short Range Dispersion Modelling
- 3rd Gen Models i.e. ADMS, AERMOD
- Handle local pollutants
 - NOx, CO, Local PM10
- Emission details must be well defined
- Cannot accommodate imported pollution

Forecasting Air Quality

- Long Range Dispersion Modelling
 - 3D Numerical Models e.g. Models 3, NAME
 - Lagrangian / Eulerian
 - Provides analysis of
 - » 3D Mesoscale to global transport of airborne material
 - » atmospheric dispersion incl. calm conditions
 - » atmospheric loss processes wet and dry
 - » can represent chemical transformations, radioactive decay and biological hazards

The NAME dispersion model

Lagrangian particle model

- Air concentrations and deposition
- 1-10000km, hours-days
- 3D met data from Unified Model
- Emergency response
- Air Quality
- Estimating source strengths
 verify greenhouse and
 ozone depleting gas
 inventories

NAME - Met Data

- Met data from Unified Model
- Global 60km, 34 levels
 - 3 hourly fields to T+726 hourly to T+144
- Mesoscale 12km, 34 levels
 - hourly fields to T+48
- Updated four times daily
 - 00Z, 06Z, 12Z and 18Z
- Nested structure (spatially and temporally)
- 6 year analyses archive (Europe)
 - Can use ECMWF data

NAME - verification

- Limited data available to test long range dispersion models no 'ideal' datasets
- Confidence derived from range of applications
- Case studies
 - Chernobyl, Petrol plume (1997), ETEX experiment, Volcanic plumes, Saharan dust
- Mace Head
 - Estimating source strengths and comparing with inventories
 - Model vs observations at Mace Head given UK/European emissions
- Air Quality
 - Forecast skill
 - Episode studies (eg high SO2)

Mace Head CFC Comparison

Applications

- Emergency Response
- National + Local A.Q. Forecasts
- Impact Assessments
- Events Analysis
- Research

Emergency Response

- Nuclear Releases
- Chemical Releases
- Foot and Mouth spread
- Volcanic Ash Advisory Service

Air Quality Forecasts

National

- Forecasts on regional basis
- All pollution species

Local

- Hourly pollution forecasts
- 3-5 days ahead
- All major pollution species
- Client specific locations

Emissions

- National Emissions
 Inventory
- Detailed Local Emissions
- European Emissions

Traffic Emission Weighting Function

Applications contd

- Impact Assessments
 - Offered to Industry to help meet regulatory requirements.
 - Forecasts sometimes offered as management tool.
- Events Analysis
 - Investigations of specific pollution episodes.

Research

Models used as research tools and are continually being improved.

Air Quality Challenges

Emissions

- Measurements
- Meteorology + Dispersion
- Chemistry

Emissions

- Pollution emitted from a wide range of activities
- Spatial resolution
- Spatial coverage
- Current emission data
- Temporal resolution

Measurements

- How good is the air quality model?
 - Need to compare with observations
- Observations: single point in space and time averaged
- Modelled data: Volume and time averaged
- NOT a comparison of like with like values
 - Obs could be effected by local feature or source
 - » subject to turbulent fluctuations
 - » ideally requires many obs in the modelled volume

Meteorology and Dispersion

Spatial and temporal resolution of 3D meteorology

- Are local (to source or receptor) features captured? (terrain, urbanisation, coastal)
- How well resolved is the Day to Night transition?
- Long range transport of pollutants requires accurate modelling of evolving synoptic picture
- Features important to atmospheric dispersion
 - 3D wind (mean flow)
 - Boundary Layer Depth
 - Atmospheric Stability and Surface Roughness (turbulence)

Chemistry

Atmospheric Chemistry

- non-linear and complex
- Some reactions occur in the aqueous phase (requires cloud information)
- All primary species and their products need to be modelled (formation of sulphate and nitrate, components of secondary PM₁₀, requires the primary species SO₂, NO and NH₃ to be modelled)

Useful Websites

Air Quality Forecasts:

- http://www.metoffice.com/environment/aq/index.html
- Boxurb (Box Model):
- http://www.metoffice.com/environment/boxurb/index.html
- Aeolius (Street Canyon):
- http://www.metoffice.com/environment/aeolius1.html
- UV Forecasts:
- http://www.metoffice.com/weather/gsuvi.html
- Noel Nelson e-mail: noel.nelson@metoffice.com

